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On the Mach reflexion of a solitary wave 
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Miles’ (1977 b )  model of the Mach reflexion of a solitary wave by a vertical wall is 
tested by laboratory experiments. The model over-predicts the measured run-up at  
the wall, and no evidence of the predicted maximum was found. The measurements 
provide support for the predicted critical angle of incidence at which Mach reflexion 
is replaced by regular reflexion. It is shown that mass and energy conservation deter- 
mine the length of the reflected wave in Miles’ model and that this is not consistent 
with momentum conservation in the neighbourhood of the end point of the reflected 
wave. It is suggested that the discrepancy between the measurements and the model 
may result from this failure of the model. 

1. Introduction 
Miles (19773) has recently conjectured that the Mach reflexion? of a solitary wave 

at a rigid wall may be described by the resonant interaction of three Boussinesq 
solitary waves. Earlier observations and experiments (Perroud 1957; Chen 1961; 
Wiegel 1 9 6 4 ~ ’  b )  had revealed that regular reflexion of a solitary wave is impossible 
for sufficiently small angles of incidence and is replaced by Mach reflexion. The apex 
of the incident and reflected waves then moves away from the wall and is joined to it 
by the Mach stem. 

Although the experiments of these workers display qualitative agreement with 
Miles’ model, they do not confirm the more important of his predictions: the angle 
of incidence at  which Mach reflexion gives over to regular reflexion, and the run-up 
a t  the wall. The primary purpose of the present paper is to report an experimental 
study of Mach reflexion and to examine the validity of Miles’ model. 

1.1. Miles’ model 

A solitary wave of free-surface displacement eddy in water of quiescent depth d is given 

by 
7 = k2sech28+O(e), (1 .1)  

(1.2) 

are the phase, wavenumber and circular frequency, c is the wave speed, 6, is a phase 
constant, x = {x,y} is the co-ordinate vector in a horizontal plane, and E is a small 

t The phenomenon is named after the geometrically similar reflexion of a gasdynamic shock 

where 8 = k.x-wt+O,, 

k = k{cos $, sin $}, w = kc = k{ 1 + $k2e + O(e2)}  

at a corner. 
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FIGURE 1. The Mach-reflexion pattern, where S Q  is the incident wave, 
PQ the reflected wave, and QR the Mach stem. 

parameter. The Mach reflexion is depicted in figure 1, wherein the subscripts i, r and 
m refer to the incident wave, the reflected wave, and the Mach stem, respectively. 
Miles concluded that an asymptotically stationary resonant reflexion pattern is 
attained wherein 

{hi, Ic,, k,} = {I, k, 1 + k}, ( 1 . 3 ~ )  

and the angles subtended at  the normal to the wall are given by 

($i, $r) $m) = (3613 {k, 1, 0)) (1 .3b )  

k = $J(3e)4,  and the dimensionless amplitude of the incident wave, k:, is taken to 
be unity. The apex of the incident and reflected waves moves away from the wall at 
a constant angle, $*, with speed G* where 

$* = (&€)&(i-k), c* = l + $ s ( l + k + k z ) .  (1.4a, b )  

It follows from (1 .3 )  that the amplitude of the reflected wave decreases from 1 to 0 
as $i decreases from (3e)h to 0,  whilst the stem angle $* increases from 0 to (+e)g, 
i.e. the Mach stem disappears at  the critical angle 

$i = $c = (3e )k  (1.5) 
Miles combined (1 .3)  with his earlier treatment of obliquely interacting solitary 

waves (Miles 1977a) and concluded that the run-up at the inclined wall, awd, is given by 

- 4[1+(1-k-2)t]-1 ($: > 3e),  ( 1 . 6 ~ )  
a( ( ( l + k ) Z  (9: x 3 4 ,  (1 .6b)  

- 

where aid is the amplitude of the incident wave.? 

1.2. Perroud’s measurements 

Perroud’s (1957; see also Wiegel 1964a, b )  measurements are perhaps the only data 
that are available for the Mach reflexion of a solitary wave a t  a rigid vertical wall. 
The majority of measurements were made in a ripple tank of depth 4 cm for ai in the 
range 0.08-0.38. Surface displacements were made with resistance wave gauges (of 

t The surface displacement is given by ad, with the local maximum denoted by the 
corresponding subscript on a : ui = e.  
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FIGURE 2. Perroud’s (1957) measurements of (a) the run-up at the wall, and (3) the amplitude 
of the reflected wave, replotted together with Miles’ (19773) predictions (-). ai values: 0 ,  
0-08; m, 0.16; A, 0.23; x , 0.28; 0, 0.34; +, 0.38. 

wire diameter 0.1 6 cm) and were stated to have an error of ‘less than k 10 % . . . for 
wave heights not too small’.? Perroud found that the critical angle separating Mach 
and regular reflexion ‘ . . . seems to be 4Fj0 ’, and that the height of the incident wave 
had little influence on the reflexion pattern: @,. and @* were sensibly independent of 
ai. His measurements of the run-up a t  the wall and the amplitude of the reflected 
wave are shown in figures 2 ( a )  and 2 ( h )  respectively. These figures show fair agreement 
with Miles’ model for k < 1, but the predicted extremum in is not evident a t  k = 1 .  

t The fact that  the ratio ofwiro diameter to incident wave amplitude was in therange0.1-0.5 
would suggest that  this error estimate may be optimistic. 
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However, Perroud’s experiments showed evidence of capillary effects, and wave 
breaking was evident in a significant number of cases. 

Perroud’s experiments do not provide a definitive test of Miles’ model and the 
experiments reported here were designed to overcome the problems of scale evident 
in Perroud’s results. 

2. Experiments 
The experiments were carried out in a wave basin 18.3 m long and 6-2 m wide, with 

water of 0.2 and 0-3 m depth. An extensive survey of the concrete basin floor with a 
theodolite showed it to be horizontal to within & 0-5 cm, giving a corresponding error 
in the depth of the water. The longer side walls of the basin were made of asbestos 
board and were carefully aligned and sealed. The inclined wall was made of asbestos 
board hinged to the side wall at  a distance of 4.2m from the northern end of the 
basin. The inclined wall could be rotated about the vertical hinge to give the required 
angle of incidence. The bottom of the inclined wall was sealed with a flexible gasket 
compressed between its lower edge and the floor of the basin. 

Solitary waves were generated by a vertical bulkhead that spanned the northern 
end of the basin and was actuated by a servo-controlled hydraulic system. The 
horizontal displacement of the bulkhead responded linearly to the input voltage, 
which was the analogue of the horizontal displacement of the corresponding fluid 
particle. This was computed digitally for each water depth and wave amplitude and 
was recorded on magnetic tape for subsequent play-back. The surface displacement 
was measured with resistance wave gauges having a resolution of 5 0-02 cm. The 
method of solitary-wave generation, and the wave gauges, have been described in 
greater detail by Chang, Melville & Miles (1979). 

The incident wave was measured a t  two stations on a line parallel to the incident 
wave crest, intersecting the vertex of the inclined wall and the side wall. The effects 
of capillarity in the immediate vicinity of the wall were avoided by making measure- 
ments a t  no less than 2cm from the wall. This distance is typically two orders of 
magnitude less than the horizontal scale of the reflexion pattern, and no significant 
difference was evident between the wave amplitudes measured at this position and 
a t  a distance of 5 cm from the wall. 

The experimental procedure was as follows. The water surface was skimmed con- 
tinuously overnight and the depth checked and adjusted immediately prior to 
beginning the experiment. The wave gauges were statically calibrated in 1 cm steps 
and the gain of the wave generator checked and adjusted to give the required wave 
amplitude. The series of measurements along and normal to the wall were conducted 
separately. In  the former case two gauges were used. The solitary wave was generated 
a number of times, with both gauges being moved between runs, giving measurements 
at  one metre intervals along the wall. In  the latter case three gauges were used 
suspended from a steel beam normal to the wall. One gauge was fixed 5 cm from the 
wall, while the other two were moved between runs. The time between runs was 
sufficient to ensure a quiescent surface (but see $3.2). Each series of measurements 
lasted two to four hours, after which time the gauges were recalibrated. Typically, 
the difference in the two calibrations was f 0.04 cm, and no correction for this drift 
was made. The surface displacement was recovered by linear interpolation of the 
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FIGURE 3. Measured run-up at the wall as a function of z for ai = 0.1 and for 
$i  values: 0, 10"; 0, 15"; A, 20"; V ,  25"; x , 3 0 ° ;  +, 35". 

calibrations. The analogue output of the wave gauges was sampled digitally a t  100 
or 167Hz and recorded for subsequent processing. For each time series the mean 
of the first second of data was used as the datum from which the surface elevation was 
computed. 

A solitary wave of dimensionless amplitude a has a characteristic length proportional 
to a d .  The dimensions of the available wave basin then impose a considerable con- 
straint on the lowest wave amplitude that may be studied. On the other hand, in 
order to avoid wave breaking a t  the wall the incident wave must be relatively small. 
Further, the basin dimensions impose a restraint on the maximum angle of incidence 
that may be obtained while still retaining a useful length of inclined wall. Within these 
constraints the experimental conditions were, h = 20, 30cm, ai = 0.1, 0.15, 
$i = 0'-45". Note that $, = 31"23', 38"26' for ai = 0.1, 0.15, respectively. 

3. Results 
I n  all the results presented here the position of the measurements will be given by 

the orthogonal co-ordinates (x, y) non-dimensionalized with respect to the quiescent 
water depth, h. The inclined wall having its vertex a t  the origin defines the x axis (see 
figure 1) .  The unit of time is (h/g)&,  the time taken for a linear wave to travel a hori- 
zontal distance equivalent to one depth. Where applicable, the results will be presented 
in terms of either $i or the normalized variable k, according to whichever better 
correlates the data. 

3.1. Run-up at the wall 

The run-up a t  the wall was measured in the range 0 < x < 26.7 with ai = 0.1, 0.15 
in a depth of h = 30 em. A limited series of measurements were carried out at x = 24, 
30 with aL = 0.1 in a depth of 20cm. Figure 3 shows the wave amplitude a t  the wall 
plotted as a,,/ai vs. x for ai = 0-1 and $i in the range 0 < $i < 35" (0 < k < 1.16). 
These data all show an initial rapid increase in a, with 50 yo of the final increment 
typically occurring in the first five depths along the wall. Within this region there 
appears to be significant scatter in the measurements at the larger angles. (This was 

10 F L Y  98 
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FIUURE 4. Measured run-up a t  the wall as a function of $i. For h = 30 em, z = 26.7: + , U, = 0.1; 
x ,  ui = 0.15. For h = 20cm, ui = 0.1: 0, z = 24; 0, z = 30. The solid lines are Miles' (19778) 

predictions for ui = 0.1, 0.15, and the arrows indicate the corresponding predictions of the 
critical angle a t  $i = 31'23' and 38'26', respectively. 

originally thought to be due to the discontinuity of slope at the wall, but attempts 
to remove this corner with a smooth transition showed no significant change in the 
measurements.) This is followed by a much slower increase in the run-up. The run-up 
appears to have attained an equilibrium value for the smaller angles of incidence 
($i < 15") within the range of the measurements, but that a t  the larger angles stiIl 
shows some growth, albeit small, at the largest values of x attainable. 

In  figure 4 we have plotted aw/ai us. $i at x = 26-7 for h = 30cm, ai = 0.1, 0.15, 
along with the measurements at x = 24,30 for h = 20 em, ai = 0.1. The measurements 
show a monotonic increase in the run-up towards the linear result of aw/ai = 2. The 
agreement with Miles' model is poor over the range of qFi measured. Indeed it appears 
that Perroud's results show somewhat better agreement (cf. figure 2a). 

Figure 5 shows the surface displacement at x = 16.7 for ai = 0.15. The curves are 
monotonic, with those for smaller ki displaying a sensibly uniform plateau next to 
the wall. This corresponds to the Mach stem. However, the transition from the 
incident wave to the Mach stem is comparable to  the length of the plateau, permitting 
no clear demarcation of the two regions. 

3.2. The critical angle 

In  the absence of the predicted maxima in aw it  was not possible to measure directly 
the critical angle, in consequence of which it became necessary to resort to indirect 
means. In  the Mach-reflexion pattern the crest of the Mach stem is normal to the wall, 
whereas the crest of the incident wave subtends an angle $i to the normal. The 
locus of the crest of the incident wave in a ( y , t )  diagram is a straight line whose 
intercept on the y axis is a measure of the length of the Mach stem. If the Mach stem 
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FIGURE 5. Measured surface displacement as a function of y for at = 0.15 
at II: = 16.7. $i values: +, 10"; x , 20'; 0 ,  30"; 0 35". 

were straight over its whole length and of uniform height and if the fluid were able 
to sustain discontinuities this length would be uniquely determined; however, the 
Mach stem may be slightly curved and the transition to the incident wave is con- 
tinuous and smooth (figure 5) .  These real effects may lead to some ambiguity in 
defining the length of the Mach stem, but the differences between the intercept 
measure and the other readily conceivable measures are likely to be minor. 

The intercept method, requiring as it does the measurement of the time between 
two waves crossing the normal, introduces two problems: one conceptual, and one 
practical. The first involves the different shapes of the Mach-stem and the incident 
wave (see 3 3.4 below). Is the appropriate time that between maxima, the centres of 
mass, or some other measure of effective wave position? The second problem is that 
of noise. If one chooses to  measure the time between maxima then even very small 
noise levels can lead to  significant errors. The extensive use of absorbing barriers was 
precluded by the nature of the experiment and resulted in rather long settling times 
for the basin. Further, the large scale of the basin made it difficult to prevent 
draughts in the laboratory from generating surface waves. Both sources of noise were 
evident. 

We resolved both the conceptual and practical problem by using a correlation 
technique to  define the elapsed time. The correlation function between two records 
ri(t), ri(t) is defined by 

The elapsed time between waves crossing the normal is then given by r*, where 
Rii(r*; T )  is the maximum of Rij .  The length of the window was chosen to  be much 
longer than the period of the noise but shorter than a characteristic time of the waves. 
Tests of 24 pairs of time series with TlAt = 3 2 , 4 0 , 6 4 , 8 0 ,  100, where At is the sampling 
interval, showed that the mean of the maximum difference in r* was At, with a 
standard deviation of At. T was set to  64At for all subsequent data analysis. 

10-2 
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FIGURE 6. Reconstruction of the reflexion pattern from the measured elapsed time, re ,  between 
the wave pwsing a t  the wall and at wave gauges displaced a distance y normal to the wall (see 
§3 .2 ) ,  a, = 0.15. (a) z = 16.7. ( b ) z  = 23.3. fii values: 0, 10"; 0, 15'; A, 20"; V ,  25"; x ,  30"; 
+, 35". 

Figure 6 ( a , b )  shows the (y,7*) diagrams for ai = 0.15 at x = 16.7 and 23.3, res- 
pectively. The slope of the locus of the incident wave in these diagrams is 

dy ld t ,  = ci sec @i. 

Both ci and @i were measured and the slope computed. The solid lines in figure 6 
have the computed slope, and intercepts on the y axis which bisect the range of 
intercepts defined by the data and the measured slope. These intercepts were then 
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FIGURE 7. $* (see figure 1) determined from an extrapolation of the results depicted in figure 6 
and plotted against k (see 3 1) for x = 16.7: 0 ,  a,  = 0.1; 0, a$ = 0.15. x = 23.3: a, a, = 0.1; 
0, ai = 0.15. The solid lines are the linear least square fits to the data. The broken lines represent 
Miles’ (1977b) prediction. The intercepts of the experimental curves on the k axis are a t  k = 1.07 
and 1-03, for z = 16.7 and 23.3, respectively. ’ 

used to compute @* (cf. figure I), the angle subtended by the Mach stem a t  the origin, 
and the results are shown in figure 7 where they are plotted against k. Also shown 
are Miles’ predictions. The linear behaviour predicted by Miles is evident in the 
measurements, except perhaps in the neighbourhood of k = 1 where the measured 

for 17: = 16.7, ai = 0.1 are still finite. (These points support Perroud’s finding that 
a small Mach stem still persisted a t  his measured critical angle.) Neglecting these two 
points and making linear least-square fits to the data gives intercepts on the k axis 
a t  k = 1.07 and 1.03, for data taken a t  x = 16-7 and 23.3, respectively. This agreement 
with Miles’ model is perhaps better than one might have hoped for as the results are 
obtained through a double extrapolation of the measurements. Nevertheless, the error 
is most unlikely to be as much as 50 % which is what would be required to agree with 
Perroud’s result: $c z 45”. One further feature of figure 6 is the evident decrease in 
the intercept on the @* axis with an increase in x. This suggests that the reflexion 
pattern may still be evolving a t  the largest value of x attainable in the experiment.t 

3.3. The rejiected wawe 

The reflected wave amplitude was determined by measuring the second local maximum 
of the time series; the first corresponded to  either the incident wave or the Mach 
stem. The relatively small amplitudes of the reflected wave, a t  least for the smaller 
angles of incidence, result in considerable uncertainty in the data, which are plotted 

t Computing linear least-square fits to the data according to ai, rather than x as is done in 
figure 7, results in intercepts on the k axis a t  k = 1.01 and 1.05, for ai = 0.1 and 0.15, respectively. 
These results suggest that if the reflexion pattern is still evolving i t  is doing so very slowly. 
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FIGURE 8. Measured reflected wave amplitudes versus $i. For z = 16.7: I, ai = 0.1; : , ai = 0.15. 
For x = 23.3: 1 , a, = 0.1; 2' , ai = 0.15. The solid curves are Miles' (1977b) predictions. There 
ww some evidence of a, varying along the wave and the bass denote the range of a,. The symbol 
I has been offset for clarity. 

along with Miles' predictions in figure 8. For small $i the agreement with the pre- 
dictions is fair; however, it is clear that the data are better correlated by $i than by k. 

It proved impossible to obtain a reliable measure of $? from the time series; how- 
ever, the measurements did show that PQ, the length of the reflected wave, was 
greater than that required by Miles' model (see 3 4.1). 

3.4. Wave proJiles 

Figure 9 ( a )  shows a montage of surface elevation along the normal x = 16.7 for 
ai = 0.15, $i = 20". The top profile is the furthest from the wall and shows the incident 
wave followed by the reflected wave. Moving towards the wall, the incident and 
reflected waves converge and evolve into the Mach stem. Figure 9 ( b )  shows the upper 
and lower plots of figure 9 (a) along with the corresponding Boussinesq profiles. The 
incident wave agrees very well with the Boussinesq profile except in the neighbour- 
hood of the tail. The reflected wave is considerably different. It is not certain whether 
the dimensions of the basin permitted the evolution of the reflected wave to its final 
form, and this may account for some of the discrepancy. The Mach stem agrees 
moderately well with the Boussinesq profile over most of its length but consistently 
displays a following depression. Remarkably, this depression maintains its integrity 
and does not appear to result in a dispersive tail. Perroud also found this depression 
in his measurements. 

4. Mass, energy and momentum 
The discrepancy between Miles' model and the experimental measurements is much 

greater than can be accounted for by experimental error or failure of the reflexion 
pattern to reach the required asymptotic state. We have found some discrepancy 
between the measured and the corresponding Boussinesq profiles, but this too does 
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FIGURE 9. (a)  Measured surface profiles, a ws. t ,  for a1 = 0.15 a t  x = 16.7. The scale on the 
extreme left is the position a t  which the profile was measured, and the smaller inset scale is that 
of the surface elevation. ( b )  The upper and lower plots of (a), a t  y = 15 and 0.33, respectively, 
along with the Boussinesq profiles (---) corresponding to the wave amplitudes. Note that the 
reflected wave is much narrower than a Boussinesq solitary wave. 

not appear to be sufficient to account for the large discrepancy between the measured 
and predicted run-up (cf. figure 4). 

It is shown here that the global conservation of mass and energy along with Miles’ 
model determines the length of the reflected wave (PQ in figure 1)’ but that this 
constraint leads to a violation of momentum conservation in the neighbourhood of P. 
In 3 5 it is suggested that these results may account for the discrepancies. 

4.1.  Conservation of mass and energy 

Referring to figure 1 the increment in length per unit distance travelled by the incident 
wave in the x* direction is li, I,, I, for the incident wave, the reflected wave and the 
Mach stem, respectively. Let mi, mr, m, be the mass per unit length of the corres- 
ponding waves and ei ,  er, em be the corresponding energies. From ( 1 . 3 ~ )  and the 
properties of the Boussinesq solitary wave it follows that 

(m,)mr)mm)K at(17k) 1 + k ) ,  ( 4 . 1 ~ )  

( e i , e r , e m ) K a ~ ( l , k 3 7 { 1 + k ) 3 ) )  ‘ (4 .1b)  
where ai < 1 ,  k = O( 1). 

It is readily seen from figure 1 that, with error factors of 1 + O(ai), 

and 
li = -sin ((ri + $*) = - (a,/3)4( 1 + 2k) 

I, = sin $* = (ai/3)*( 1 - k). 
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Conservation of mass requires that 

mil~+m,.lr+mml, = 0, (4.4) 

which with (4.2) and (4.3) gives the incremental length of the reflected wave: 

5 = (ai/3)4(k + 2) .  (4.5) 

It is readily shown that conservation of energy, 

e i l i i -e , l r+emlm = 0, (4.6) 

leads to the same expression for I,.. 

4.2. Conservation of momentum 

It may be shown that equation (4.5) along with the other properties of the model 
imply that mass and energy are conserved if the reflected wave is terminated by the 
ray passing through the vertex, normal to the reflected wave. Miles (personal com- 
munication) has shown that, to within the same order of error, such a configuration is 
consistent with global momentum conservation. However, a global balance of 
momentum is a relativeIy weak test of the model. 

The end point of the reflected wave P moves with constant velocity c,.. Consider 
the dynamics in a frame fixed on P .  It is readily seen that, in order to satisfy Euler’s 
equations and balance the preszre gradient across P parallel to  PQ, the fluid must 
be accelerated in the direction QP. However, local mass conservation along with the 
constraint that  the reflected wave is a Boussinesq solitary wave implies that  the 
depth-averaged velocity component along the PQ axis is zero. The model then is not 
consistent with momentum conservation in the neighbourhood of P .  

5.  Discussion 
The present experiments along with those of Perroud (1  957) cast considerable 

doubt on the use of Miles’ model to describe Mach reflexion a t  a rigid wall. 
The largest discrepancy between the model and the measurements is in the run-up 

a t  the wall. The measurements are neither extensive enough nor accurate enough to 
resolve the disposition of the mass carried by the Mach stem in Miles’ model; never- 
theless, the problem with momentum conservation elucidated in tj 4 suggests a plausible 
explanation. We have shown that together, the hypothesis of the reflected wave being 
of Boussinesq form, and the resulting trajectory of the end point P,  are not consistent 
with momentum conservation. If the end point P has a velocity component parallel 
to the crest while retaining the Boussinesq wave, the end point is a source/sink of 
mass. This is not physically possible. If, however, the fluid in the reflected wave has a 
velocity component parallel to  its crestLhen mass conservation may be satisfied. 
There would then be a mass flux along PQ supplied by either the incident wave or 
the Mach stem. A mass flux out of the Mach stem would be consistent with a reduced 
amplitude a t  the wall. 

These conjectures are consistent with the observation that the length PQ of the 
reflected wave is greater than that required for Miles’ model to  conserve mass and 
energy. 
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In  the absence of the predicted extremum in the run-up, the method of measuring 
the critical-angle is not very accurate, requiring two extrapolations of the data. 
However, it does support Miles’ prediction that $, = (3ai)*, and casts doubt on 
Perroud’s conclusion that $, z 45”. 

The ray theory of solitary wave reflexion a t  a concave corner (Miles 1977c) appears 
to support the prediction of the run-up by the dynamical model (Miles 19773). More- 
over, ray-theory neglects entirely the reflected wave and thus may appear to cast 
some doubt on the importance attached here to the reflected wave. However, in the 
former model the Mach stem is still of finite length a t  the critical angle, carrying the 
mass and energy that in the latter model appears in the reflected wave. The two models 
then are not consistent in the neighbourhood of k = 1 ,  where, due to the small length of 
the Mach stem, a small change in the disposition of mass may result in a large change 
in a,. 

It should be stressed that our conclusions regarding the applicability of Miles’ 
resonant interaction model to Mach reflexion at a wall do not imply that the resonant 
interaction solution is generally invalid. However, the resonant interaction solution 
is only recovered for ai j, 0, and the boundary condition of zero transverse velocity 
a t  the inclined wall is only satisfied asymptotically as c* t --f GO. This latter constraint 
is consistent with the solution applying to the interaction between three waves of 
sensibly infinite extent (see Miles 19773, table 2 and figure 3). This presents some 
difficulty in the context of Mach reflexion a t  a rigid wall for which l,j,O as k f 1. 
I n  addition, the resonant interaction solution does not satisfy the condition a t  infinity 
in the direction of the reflected wave, q N o( I), (i.e. the reflected wave terminates in 
quiescent fluid); satisfying instead the asymptotic limit q N qT, where q7 = O(1). 
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